

## Note

### Synthesis of pyrimidine based thiazolidinones and azetidinones: Antimicrobial and antitubercular agents

R B Patel, P S Desai, K R Desai &  
K H Chikhalia\*

Department of Chemistry, South Gujarat University  
Surat 395 007, India

E-mail: chikhalia\_kh@yahoo.com

Received 19 April 2004; accepted (revised) 16 December 2005

Several 2-aryl-3-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl-ureido]-4-thiazolidinones **5a-j** and 1-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl-ureido]-3-chloro-4-aryl-2-azetidinones **6a-j** have been synthesized and tested for their antibacterial, antifungal and antituberculosis activities against different microorganisms. The structures of novel synthesized compounds have been established on the basis of elemental analyses, <sup>1</sup>H NMR and IR spectral data.

**Keywords:** Pyrimidine, thiazolidinone, antimicrobial activity, anti-tubercular activity

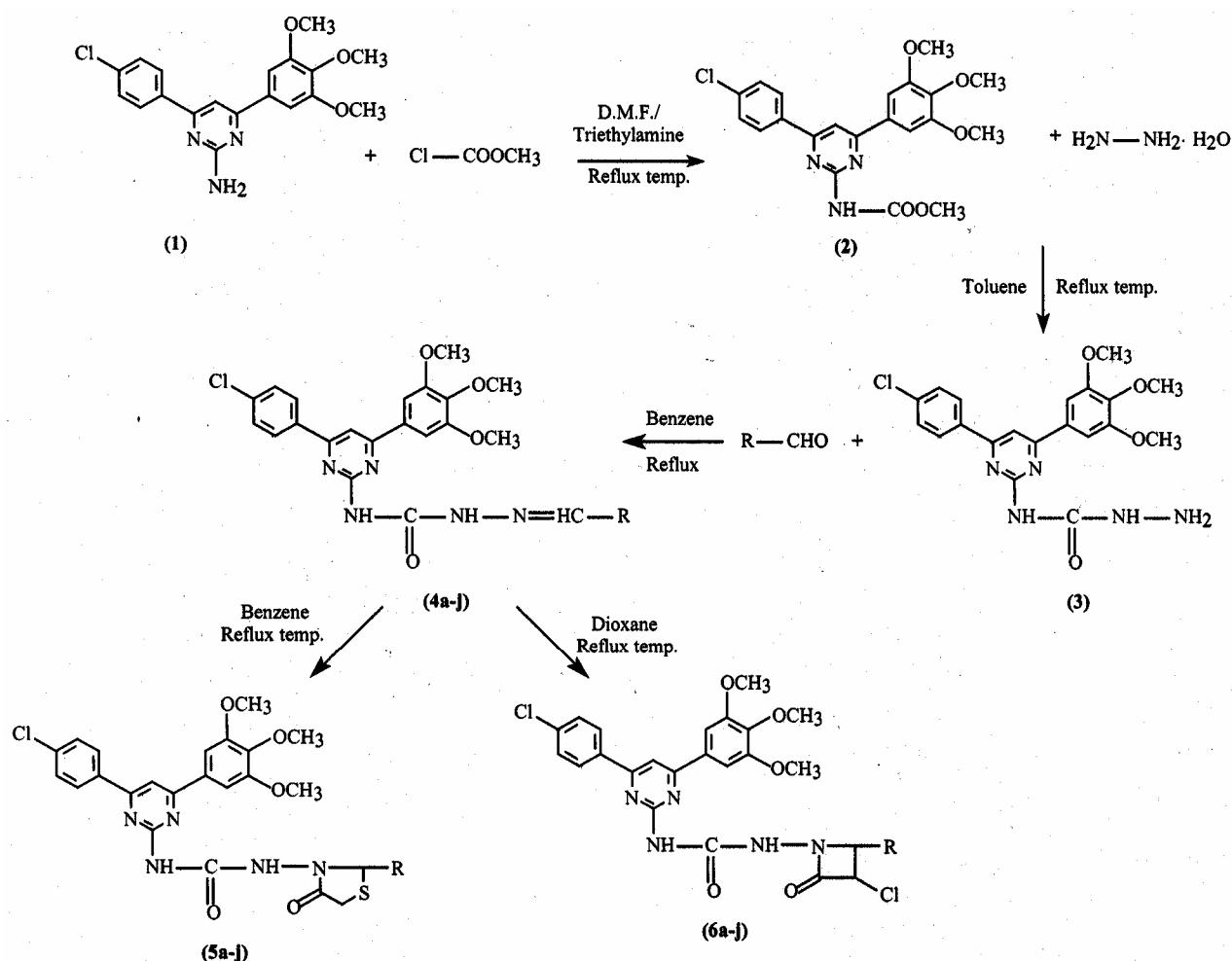
**IPC:** Int.Cl.<sup>7</sup> C 07 D

Literature survey reveals that most of the compounds having pyrimidine or thiazolidinone and azetidinone nucleus possess pharmacological action<sup>1-3</sup>. A wide spectrum of biological activities like anti-inflammatory<sup>4</sup>, antibacterial<sup>5</sup>, antifungal<sup>6</sup>, antitubercular<sup>7</sup>, analgesic and hypothermic<sup>8</sup> are found to be associated with compounds having pyrimidine moiety. 4-Thiazolidinone and its derivatives are known to possess a variety of physiological properties viz. analgesic, local<sup>9</sup> and spiral<sup>10</sup> anesthetic, CNS stimulant<sup>11</sup>, hypnotics<sup>12</sup>, antibacterial<sup>13</sup>, antifungal<sup>14</sup>, antitubercular<sup>15</sup>, anticancer and anti-HIV<sup>16</sup>. Azetidinone and its derivatives are also a very good antibacterial<sup>17</sup>, antitubercular<sup>18</sup> and antifungal<sup>19</sup> agents as well as possess pharmacological properties<sup>20,21</sup>.

The required starting compound 2-amino-4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidine **1** was prepared by known method<sup>22</sup>. Pyrimidine **1**, which on treatment with chloromethylformate yielded 4-(4-chlorophenyl)-6-(3, 4, 5-trimethoxyphenyl)pyrimidin-2-yl-carbamate<sup>23</sup> **2** followed by condensation with hydrazine hydrate gave 4-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl]semicarbazide<sup>24</sup>

**3**. This semicarbazide **3** was transformed into semicarbazones<sup>25</sup> (**4a-j**, **Table I**) by condensation with substituted aromatic aldehydes. These semicarbazones **4a-j** were converted into 2-aryl-3-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl-ureido]- 4 -thiazolidinones<sup>26</sup> (**5a-j**, **Table I**) and 1-[4-(4-chlorophenyl)-6-(3, 4, 5 - trimethoxyphenyl)pyrimidin -2-yl-ureido]-3-chloro-4-aryl-2-azetidinones<sup>27</sup> (**6a-j**, **Table I**, **Scheme I**).

## Experimental Section


**General.** Melting points were determined in open capillary tubes and are uncorrected. IR spectra ( $\gamma_{\text{max}}$  in  $\text{cm}^{-1}$ ) were recorded on a FT BOMMEN IR spectrophotometer; <sup>1</sup>H NMR spectra on a Hitachi 300MHz using TMS as internal standard (chemical shifts in  $\delta$ , ppm) and elemental analyses were done on Haraeus Rapid Analyser.

**4-(4-Chlorophenyl)-6-(3,4,5-trimethoxyphenyl)-pyrimidin-2-yl-carbamate<sup>23</sup>** **2**. To a solution of pyrimidine **1** (0.1 mole, 37.15g) and triethylamine (0.15 mole, 15.15g, 20.84 mL) in DMF (150 mL) was added methylchloroformate (0.15 mole, 14.18 g, 11.59 mL) dropwise at 0-5°C. Then, the reaction mixture was refluxed for 15 hr on oil-bath. Progress of the reaction was monitored by TLC using toluene-ethyl acetate (80:20) as eluent. After completion of reaction, it was poured into dil. HCl (160 mL, 50% v/v) with stirring. The solid obtained was filtered and dried. The crude product was purified by crystallization from absolute alcohol to give **2**, m.p. 145°C, yield 60% (Found: N, 9.55.  $\text{C}_{21}\text{H}_{20}\text{O}_5\text{N}_3\text{Cl}$  requires N, 9.78%).

**4-[4-(4-Chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl]semicarbazide<sup>24</sup>** **3**. The mixture of **2** (0.1 mole, 43 g) and hydrazine hydrate (0.43 mole, 21.5 g, 20.87 mL) in toluene (43 mL) was gently heated in oilbath for 18 hr. Progress of the reaction was checked by TLC using toluene-ethyl acetate (80:20) as eluent. Then, the reaction mixture was cooled to give white crystals. After the completion of reaction, the reaction mass was filtered and dried. The crude product was purified by crystallization from absolute alcohol to give **3**, m.p. 130°C, yield 75% (Found: N, 16.00.  $\text{C}_{20}\text{H}_{20}\text{O}_4\text{N}_5\text{Cl}$  requires N, 16.29%).

**Table I** — Characterization data of the compounds **4a-j**, **5a-j** and **6a-j**

| Compd     | R                                                                    | Mol. formula                                                                    | Yield (%) | m.p. °C | Calcd (Found)   |              |                 |
|-----------|----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|---------|-----------------|--------------|-----------------|
|           |                                                                      |                                                                                 |           |         | C               | H            | N               |
| <b>4a</b> | 3-NH <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>27</sub> H <sub>25</sub> O <sub>4</sub> N <sub>6</sub> Cl                | 74        | 165-67  | 60.85<br>(60.47 | 4.69<br>4.43 | 15.77<br>15.62) |
| <b>4b</b> | 4-N(CH <sub>3</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>4</sub>     | C <sub>29</sub> H <sub>29</sub> O <sub>4</sub> N <sub>6</sub> Cl                | 80        | 160     | 62.09<br>(62.00 | 5.17<br>5.00 | 14.99<br>14.75) |
| <b>4c</b> | 2-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>27</sub> H <sub>23</sub> O <sub>6</sub> N <sub>6</sub> Cl                | 65        | 177-78  | 57.60<br>(57.30 | 4.09<br>3.92 | 14.93<br>14.67) |
| <b>4d</b> | 2-ClC <sub>6</sub> H <sub>4</sub>                                    | C <sub>27</sub> H <sub>25</sub> O <sub>4</sub> N <sub>5</sub> Cl <sub>2</sub>   | 67        | 145-47  | 58.69<br>(58.49 | 4.17<br>4.01 | 12.68<br>12.48) |
| <b>4e</b> | 2,4-(Cl) <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                  | C <sub>27</sub> H <sub>22</sub> O <sub>4</sub> N <sub>5</sub> Cl <sub>3</sub>   | 61        | 150     | 55.24<br>(55.10 | 3.75<br>3.59 | 11.94<br>11.59) |
| <b>4f</b> | 4-FC <sub>6</sub> H <sub>4</sub>                                     | C <sub>27</sub> H <sub>23</sub> O <sub>4</sub> N <sub>5</sub> ClF               | 64        | 157-58  | 60.50<br>(60.40 | 4.29<br>4.07 | 13.07<br>12.91) |
| <b>4g</b> | 2-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>28</sub> H <sub>26</sub> O <sub>5</sub> N <sub>5</sub> Cl                | 76        | 175-77  | 61.37<br>(61.07 | 4.75<br>4.47 | 12.78<br>12.59) |
| <b>4h</b> | 4-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>28</sub> H <sub>26</sub> O <sub>5</sub> N <sub>5</sub> Cl                | 72        | 135     | 61.37<br>(61.14 | 4.75<br>4.61 | 12.78<br>12.65) |
| <b>4i</b> | 3,4,5-(OCH <sub>3</sub> ) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> | C <sub>30</sub> H <sub>30</sub> O <sub>7</sub> N <sub>5</sub> Cl                | 80        | 139-40  | 59.36<br>(59.15 | 4.95<br>4.65 | 11.52<br>11.28) |
| <b>4j</b> | 2-OHC <sub>6</sub> H <sub>4</sub>                                    | C <sub>27</sub> H <sub>24</sub> O <sub>5</sub> N <sub>5</sub> Cl                | 70        | 179-81  | 60.73<br>(60.42 | 4.50<br>4.22 | 13.12<br>13.07) |
| <b>5a</b> | 3-NH <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>29</sub> H <sub>27</sub> O <sub>5</sub> N <sub>6</sub> SCl               | 82        | 161-63  | 57.27<br>(57.38 | 4.25<br>4.45 | 13.60<br>13.85) |
| <b>5b</b> | 4-N(CH <sub>3</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>4</sub>     | C <sub>31</sub> H <sub>31</sub> O <sub>5</sub> N <sub>6</sub> SCl               | 74        | 180     | 58.43<br>(58.63 | 4.62<br>4.88 | 13.01<br>13.24) |
| <b>5c</b> | 2-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>29</sub> H <sub>25</sub> O <sub>7</sub> N <sub>6</sub> SCl               | 66        | 148-49  | 54.54<br>(54.67 | 3.80<br>3.93 | 13.03<br>13.20) |
| <b>5d</b> | 2-ClC <sub>6</sub> H <sub>4</sub>                                    | C <sub>29</sub> H <sub>25</sub> O <sub>5</sub> N <sub>5</sub> SCl <sub>2</sub>  | 73        | 150     | 55.39<br>(55.59 | 3.70<br>3.99 | 11.05<br>11.18) |
| <b>5e</b> | 2,4-(Cl) <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                  | C <sub>29</sub> H <sub>24</sub> O <sub>5</sub> N <sub>5</sub> SCl <sub>3</sub>  | 75        | 165-67  | 52.40<br>(52.69 | 3.35<br>3.63 | 10.30<br>10.60) |
| <b>5f</b> | 4-FC <sub>6</sub> H <sub>4</sub>                                     | C <sub>29</sub> H <sub>25</sub> O <sub>5</sub> N <sub>5</sub> SClF              | 68        | 172-75  | 56.95<br>(57.09 | 3.95<br>4.10 | 11.19<br>11.48) |
| <b>5g</b> | 2-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>30</sub> H <sub>28</sub> O <sub>6</sub> N <sub>5</sub> SCl               | 79        | 166-67  | 57.72<br>(57.92 | 4.27<br>4.50 | 11.02<br>11.26) |
| <b>5h</b> | 4-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>30</sub> H <sub>28</sub> O <sub>6</sub> N <sub>5</sub> SCl               | 60        | 145     | 57.82<br>(57.92 | 4.33<br>4.50 | 11.06<br>11.26) |
| <b>5i</b> | 3,4,5-(OCH <sub>3</sub> ) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> | C <sub>32</sub> H <sub>32</sub> O <sub>8</sub> N <sub>5</sub> SCl               | 71        | 149-50  | 56.17<br>(56.35 | 4.45<br>4.70 | 10.09<br>10.27) |
| <b>5j</b> | 2-OHC <sub>6</sub> H <sub>4</sub>                                    | C <sub>29</sub> H <sub>26</sub> O <sub>6</sub> N <sub>5</sub> Cl                | 64        | 153     | 57.11<br>(57.28 | 4.03<br>4.28 | 11.32<br>11.52) |
| <b>6a</b> | 3-NH <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>29</sub> H <sub>26</sub> O <sub>5</sub> N <sub>6</sub> Cl <sub>2</sub>   | 68        | 159-60  | 57.01<br>(57.14 | 4.18<br>4.27 | 13.49<br>13.79) |
| <b>6b</b> | 4-N(CH <sub>3</sub> ) <sub>2</sub> C <sub>6</sub> H <sub>4</sub>     | C <sub>31</sub> H <sub>30</sub> O <sub>5</sub> N <sub>6</sub> Cl <sub>2</sub>   | 78        | 195-97  | 58.28<br>(58.40 | 4.54<br>4.71 | 13.07<br>13.19) |
| <b>6c</b> | 2-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub>                      | C <sub>29</sub> H <sub>24</sub> O <sub>7</sub> N <sub>6</sub> Cl <sub>2</sub>   | 70        | 156     | 54.30<br>(54.46 | 3.53<br>3.76 | 13.03<br>13.14) |
| <b>6d</b> | 2-ClC <sub>6</sub> H <sub>4</sub>                                    | C <sub>29</sub> H <sub>24</sub> O <sub>5</sub> N <sub>5</sub> Cl <sub>3</sub>   | 76        | 187-89  | 55.22<br>(55.37 | 3.60<br>3.82 | 11.00<br>11.14) |
| <b>6e</b> | 2,4-(Cl) <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                  | C <sub>29</sub> H <sub>23</sub> O <sub>5</sub> N <sub>5</sub> Cl <sub>4</sub>   | 63        | 200-202 | 52.22<br>(52.49 | 3.25<br>3.47 | 10.28<br>10.56) |
| <b>6f</b> | 4-FC <sub>6</sub> H <sub>4</sub>                                     | C <sub>29</sub> H <sub>24</sub> O <sub>5</sub> N <sub>5</sub> Cl <sub>2</sub> F | 65        | 197     | 56.54<br>(56.86 | 3.66<br>3.92 | 11.19<br>11.44) |
| <b>6g</b> | 2-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>30</sub> H <sub>27</sub> O <sub>6</sub> N <sub>5</sub> Cl <sub>2</sub>   | 80        | 210-12  | 57.39<br>(57.69 | 4.05<br>4.33 | 11.09<br>11.22) |
| <b>6h</b> | 4-OCH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                     | C <sub>30</sub> H <sub>27</sub> O <sub>6</sub> N <sub>5</sub> Cl <sub>2</sub>   | 70        | 199     | 57.45<br>(57.69 | 4.10<br>4.33 | 11.01<br>11.22) |
| <b>6i</b> | 3,4,5-(OCH <sub>3</sub> ) <sub>3</sub> C <sub>6</sub> H <sub>2</sub> | C <sub>32</sub> H <sub>31</sub> O <sub>8</sub> N <sub>5</sub> Cl <sub>2</sub>   | 73        | 203-04  | 56.03<br>(56.14 | 4.42<br>4.53 | 10.02<br>10.23) |
| <b>6j</b> | 2-OHC <sub>6</sub> H <sub>4</sub>                                    | C <sub>29</sub> H <sub>25</sub> O <sub>6</sub> N <sub>5</sub> Cl <sub>2</sub>   | 71        | 220-23  | 56.98<br>(57.05 | 4.00<br>4.10 | 11.37<br>11.48) |



Scheme I

**1-(3-Aminobenzylidene)-4-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl]semicarbazide<sup>25</sup> 4a.** A mixture of 3 (0.01 mole, 4.3g), 3-aminobenzaldehyde (0.015 mole, 1.82g) and hydrochloric acid (35% w/v, 0.002 mole, 0.20g, 0.18 mL) in benzene (86 mL) was refluxed for 4 hr. Dean-Stark apparatus removed the water formed during the reaction azeotropically. Progress of the reaction was checked by TLC using toluene-ethyl acetate (80:20) as eluent. After the completion of reaction, benzene was removed by distillation to give solid, which was dissolved in methanol (70 mL). This solution was warmed and treated with sodium bisulphite solution to remove unreacted aldehyde. The solid obtained was filtered, washed with water, dried and crystallized from absolute alcohol to give 4a, m.p. 165°C, yield 74% (Found: C, 60.47; H, 4.43; N, 15.62. C<sub>27</sub>H<sub>25</sub>O<sub>4</sub>N<sub>6</sub>Cl requires C, 60.85; H, 4.69; N, 15.77%).

Similarly, other members 4b-j were prepared and their physical data are given in Table I.

**2-(3-Aminophenyl)-3-[4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidin-2-yl-ureido]-4-thiazolidinone<sup>26</sup> 5a.** A mixture of 4a (0.005 mole, 2.66g) and thioglycolic acid (0.005 mole, 0.46g) in dry benzene (80 mL) was refluxed for 6 hr. Water formed during the reaction was removed azeotropically by Dean-Stark apparatus. Progress of the reaction was checked by TLC using benzene-ether (70:25) as eluent. After the completion of reaction, benzene was removed by distillation to give solid, which was dissolved in methanol (70 mL). This solution was warmed and treated with sodium bicarbonate solution to remove unreacted acid. The solid obtained was filtered, washed with ether and purified by crystallization from methanol to give 5a, m.p. 161°C, yield 82% (Found: C, 57.27; H, 4.25; N, 13.60. C<sub>29</sub>H<sub>27</sub>O<sub>5</sub>N<sub>6</sub>Cl requires C, 57.38; H, 4.45; N, 13.85%).

Similarly, other members 5b-j were prepared and their physical and spectral data are recorded in Table I.

**Table II** — Antimicrobial screening results of the compounds synthesized

| Compd             | Antibacterial activity in mm<br>(Zone of inhibition at 50 $\mu$ g/ mL) |                  |                       |                    |                     | Antifungal activity<br>$\mu$ g/ mL<br><i>C. albicans</i> | Antitubercular<br>activity $\mu$ g/ mL<br><i>H37Rv</i> strain of<br><i>M. tuberculosis</i> |
|-------------------|------------------------------------------------------------------------|------------------|-----------------------|--------------------|---------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                   | <i>E. coli</i>                                                         | <i>S. aureus</i> | <i>S. paratyphi B</i> | <i>P. vulgaris</i> | <i>Enterobacter</i> |                                                          |                                                                                            |
| <b>5a</b>         | ---                                                                    | 22               | 13                    | 10                 | 09                  |                                                          |                                                                                            |
| <b>5b</b>         | 15                                                                     | 09               | ---                   | 13                 | 12                  | 200                                                      | ---                                                                                        |
| <b>5c</b>         | 20                                                                     | 10               | 16                    | 14                 | 21                  | ---                                                      | 100                                                                                        |
| <b>5d</b>         | 13                                                                     | 10               | 10                    | 15                 | 09                  |                                                          |                                                                                            |
| <b>5e</b>         | 16                                                                     | 16               | 10                    | 10                 | 14                  | 100                                                      | ---                                                                                        |
| <b>5f</b>         | ---                                                                    | 16               | ---                   | 11                 | ---                 | ---                                                      | 200                                                                                        |
| <b>5g</b>         | 09                                                                     | 20               | ---                   | ---                | ---                 | 200                                                      | ---                                                                                        |
| <b>5h</b>         | ---                                                                    | 17               | 11                    | 12                 | 09                  | ---                                                      | 100                                                                                        |
| <b>5i</b>         | ---                                                                    | 12               | 15                    | ---                | 14                  | ---                                                      | 200                                                                                        |
| <b>5j</b>         | ---                                                                    | 20               | ---                   | ---                | 16                  | 200                                                      | 100                                                                                        |
| <b>6a</b>         | ---                                                                    | 10               | 15                    | 16                 | 15                  | 200                                                      | 100                                                                                        |
| <b>6b</b>         | ---                                                                    | 10               | ---                   | 21                 | ---                 | 200                                                      | 100                                                                                        |
| <b>6c</b>         | 10                                                                     | 10               | ---                   | ---                | 09                  | ---                                                      | ---                                                                                        |
| <b>6d</b>         | ---                                                                    | 13               | 14                    | ---                | ---                 | 100                                                      | ---                                                                                        |
| <b>6e</b>         | ---                                                                    | 20               | 14                    | ---                | ---                 | 100                                                      | 200                                                                                        |
| <b>6f</b>         | ---                                                                    | 11               | ---                   | 19                 | 16                  | ---                                                      | 100                                                                                        |
| <b>6g</b>         | 12                                                                     | 15               | ---                   | 10                 | 17                  | ---                                                      | ---                                                                                        |
| <b>6h</b>         | ---                                                                    | 20               | ---                   | ---                | 18                  | ---                                                      | ---                                                                                        |
| <b>6i</b>         | ---                                                                    | 14               | 09                    | 20                 | ---                 | 200                                                      | 200                                                                                        |
| <b>6j</b>         | ---                                                                    | 10               | 10                    | ---                | 14                  |                                                          |                                                                                            |
| Standard<br>drugs | Norfloxacin                                                            | Althrocine       | Sparfloxacin          | Tetracycline       | Phexine             | Miconazole                                               | INH                                                                                        |
|                   | 36                                                                     | 24               | 32                    | 28                 | 36                  | 6.25                                                     | 0.05                                                                                       |

**1-[4-(4-Chlorophenyl)-6-(3,4,5-trimethoxyphenyl)-pyrimidin-2-yl-ureido]-3-chloro-4-(3-aminophenyl)-2-azetidinone<sup>27</sup> 6a.** To a solution of **4a** (0.005 mole, 2.66g) in dioxane (20 mL), chloroacetyl chloride (0.006 mole, 0.678g, 0.48 mL) was added dropwise at room temperature with constant stirring. Then, triethylamine (0.001 mole, 0.1g, 0.14 mL) was added and reaction mixture was refluxed for 12 hr. Progress of the reaction was checked by TLC using benzene-acetone (95:5) as eluent. After completion of reaction, it was poured in water. The solid was filtered, dried and crystallized from absolute alcohol to give **6a**, m.p. 159°C, yield 68% (Found: C, 57.01; H, 4.18; N, 13.49.  $C_{29}H_{26}O_5N_6Cl_2$  requires C, 57.14; H, 4.27; N, 13.79%).

Similarly, other members **6a-j** were prepared and their physical and spectral data are recorded in **Table I**.

The spectral data of the novel synthesized compounds **5a-j** and **6a-j** are given below.

**5a;** m/z: 605 ( $M^+$ ); IR (KBr): 1614, 1508 (-C=N-), 3490 (-NH-), 3350, 3400 (-NH<sub>2</sub>), 1224 (Ar-OCH<sub>3</sub>),

1780 (>C=O, cyclic), 1690 (-CONH-), 688 (-C-S-C-); <sup>1</sup>H NMR (DMSO -*d*<sub>6</sub>,  $\delta$ ): 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 5.75 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 2.7 (s, 2H, Ar-NH<sub>2</sub>), 3.32 (d, 1H, *J*=2.0, >CH-), 4.10 (s, 2H, -CH<sub>2</sub>-). **5b;** 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 5.75 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 1.20 (t, 6H, *J*=7.2, -N(CH<sub>3</sub>)<sub>2</sub>), 3.32 (d, 1H, *J*=1.9, >CH-), 4.10 (s, 2H, -CH<sub>2</sub>-). **5d;** 3.72 (s, 3H, -OCH<sub>3</sub>), 3.91 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.76 (s, 1H, -CONH-), 5.74 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.33 (d, 1H, *J*=1.4, >CH-), 4.11 (s, 2H, -CH<sub>2</sub>-). **5f;** 3.71 (s, 3H, -OCH<sub>3</sub>), 3.89 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 5.76 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.31 (d, 1H, *J*=1.8, >CH-), 4.10 (s, 2H, -CH<sub>2</sub>-). **5g;** 3.75 (s, 6H, 2-OCH<sub>3</sub>), 3.93 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 5.75 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.30 (d, 1H, *J*=2.1, >CH-), 4.11 (s, 2H, -CH<sub>2</sub>-). **5h;** 3.71 (s, 6H, 2-OCH<sub>3</sub>), 3.92 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.76 (s, 1H, -CONH-), 5.74 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.31 (d, 1H, *J*=2.0,

>CH-), 4.12 (s, 2H, -CH<sub>2</sub>-). **5i**; 3.70 (s, 6H, -OCH<sub>3</sub>), 3.93 (s, 12H, 4Ar-OCH<sub>3</sub>), 6.73 (s, 1H, -CONH-), 5.74 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.34 (d, 1H, *J*=2.1, >CH-), 4.10 (s, 2H, -CH<sub>2</sub>-). **5j**; 3.74 (s, 3H, -OCH<sub>3</sub>), 3.91 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.74 (s, 1H, -CONH-), 5.74 (s, 1H, Ar-NH-CO-), 7.51-8.28 (m, 11H, Ar-H), 3.31 (d, 1H, *J*=1.8, >CH-), 4.10 (s, 2H, -CH<sub>2</sub>-), 6.79 (s, 1H, -OH). **6a**; m/z: 608 (M<sup>+</sup>); IR (KBr): 1612, 1531 (-C=N-), 3426 (-NH-), 3340, 3400 (-NH<sub>2</sub>), 1222 (Ar-OCH<sub>3</sub>), 1720 (>C=O, cyclic), 1683 (-CONH-), 713 (C-Cl); <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>,  $\delta$ ): 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 2.7 (s, 2H, Ar-NH<sub>2</sub>), 3.31 (d, 1H, *J*=1.5, >CH-Cl), 3.34 (d, 1H, *J*=5.6, >CH-). **6b**; 3.70 (s, 3H, -OCH<sub>3</sub>), 3.89 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.74 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 1.21 (t, 6H, *J*=7.0, -N(CH<sub>3</sub>)<sub>2</sub>), 3.32 (d, 1H, *J*=1.4, >CH-Cl), 3.35 (d, 1H, *J*=5.5, >CH-). **6c**; 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 3.31 (d, 1H, *J*=1.6, >CH-Cl), 3.34 (d, 1H, *J*=5.6, >CH-). **6e**; 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 7.51-8.28 (m, 11H, Ar-H, Ar-NH-CO-), 3.31 (d, 1H, *J*=1.4, >CH-Cl), 3.34 (d, 1H, *J*=5.7, >CH-). **6f**; 3.73 (s, 3H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 3.31 (d, 1H, *J*=1.2, >CH-Cl), 3.34 (d, 1H, *J*=5.4, >CH-). **6h**; 3.71 (s, 6H, 2-OCH<sub>3</sub>), 3.91 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.76 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 3.30 (d, 1H, *J*=1.5, >CH-Cl), 3.33 (d, 1H, *J*=5.4, >CH-). **6i**; 3.76 (s, 6H, 2-OCH<sub>3</sub>), 3.93 (s, 12H, 4Ar-OCH<sub>3</sub>), 6.72 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 3.32 (d, 1H, *J*=1.6, >CH-Cl), 3.34 (d, 1H, *J*=5.2, >CH-). **6j**; 3.73 (s, 1H, -OCH<sub>3</sub>), 3.90 (s, 6H, 2Ar-OCH<sub>3</sub>), 6.75 (s, 1H, -CONH-), 7.51-8.28 (m, 12H, Ar-H, Ar-NH-CO-), 6.80 (s, 1H, -OH), 3.31 (d, 1H, *J*=1.4, >CH-Cl), 3.34 (d, 1H, *J*=5.5, >CH-).

### Antimicrobial activity

The activity was determined using cup-plate agar diffusion method<sup>28</sup> by measuring the inhibition zones in mm. All compounds were screened for their antimicrobial activity against a variety of bacterial strains such as *S.aureus*, *E.coli*, *P.vulgaris*, *S.paratyphi B* and *Enterobacter*, fungi such as *C.albicans* and antitubercular activity against *H<sub>37</sub>Rv* strain of *M.tuberculosis*. Known antibiotics like Phexine, Norfloxacin, Althrocine, Sparfloxacin, Tetracycline, Miconazole and INH were used for

comparisons. All the compounds reported in **Table II** were tested against number of bacteria, fungi and *H<sub>37</sub>Rv* strain of *M.tuberculosis*.

The present paper is focused on the synthesis of novel heterocyclic compounds as possible antibacterial, antifungal and antitubercular agents. The antimicrobial screening of the series revealed the following points.

Ten ureido linkages connecting with 4-thiazolidinone and 2-amino-4,6-diarylpyrimidine derivatives have been synthesized. It was not active up to 100 to 200  $\mu$ g/mL against *C.albicans* and *H<sub>37</sub>Rv* strain of *M.tuberculosis*. Out of ten compounds synthesized, three compound (**5c**, **5a**, **5d**) showed very good zone of inhibition on different type of microorganisms. Compound **5c** showed 20mm, 16mm and 21mm zone of inhibition for *E.coli*, *S.paratyphi B* and *Enterobacter*, compound **5a** showed 22mm zone of inhibition for *S.aureus* and compound **5d** showed 15mm zone of inhibition for *P.vulgaris*.

The structural variations such as -NH<sub>2</sub> group at 3-position on phenyl ring against *S.aureus*, -Cl group at 2-position on phenyl ring against *P.vulgaris*, and -NO<sub>2</sub> at 2-position on phenyl ring against *E.coli*, *S.paratyphi B*, *Enterobacter* exhibited excellent antibacterial activity.

Various  $\beta$ -lactam derivatives were connected to the parent compound 2-amino-4-(4-chlorophenyl)-6-(3,4,5-trimethoxyphenyl)pyrimidine through ureido linkage. The parent compound showed no activity against *E.coli*, *S.aureus*, *S.paratyphi B*, *P.vulgaris* and *Enterobacter*. It was not active up to 100-200  $\mu$ g/mL against *C.albicans* and *H37Rv* strain of *M.tuberculosis*, but presence of various  $\beta$ -lactam ring connected to the parent compound by means of ureido linkage showed moderate to excellent activity against all the microorganisms. Presence of ureido linkage showed increase in biological activity of the parent compound. Five compounds (**6a**, **6b**, **6e**, **6g** and **6h**) have exhibited excellent activity against *E.coli*, *S.aureus*, *S.paratyphi B*, *P.vulgaris* and *Enterobacter* i.e 12-21mm zone of inhibition.

The structural variations such as 3-amino substituted phenyl ring against *S.paratyphi B*, 2-methoxy substituted phenyl ring against *E.coli*, 2,4-dichloro and 4-methoxy substituted phenyl ring against *S.aureus* and *Enterobacter* and 4-N,N-dimethylamino substituted phenyl ring against *P.vulgaris* has exhibited excellent activity.

### Acknowledgement

The authors are thankful to Prof. K R Desai, Head, Department of Chemistry, South Gujarat University, Surat for providing research facilities, to Mrs P V Desai of Microbiology Department for providing facilities for *in vitro* screening and to Dr Anil Bobade, Haffkine Institute, Mumbai for providing facilities for antifungal and antimycobacterial screening.

### References

- 1 Dave C V & Shukla M C, *Indian J Chem*, 39B, **2000**, 210.
- 2 Patel R B & Chikhalia K H, *J Indian Chem Soc*, 80, **2003**, 138.
- 3 Singh A K & Birendra Kumar, *Asian J Chem*, 9(2), **1997**, 234.
- 4 Menozzi G & Filippelli W, *Farmaco*, 49(2), **1994**, 115; *Chem Abstr*, 121, **1994**, 205269h.
- 5 Barot V M, *Asian J Chem*, 8(4), **1996**, 802.
- 6 Khan M H & Nizamuddin, *J Food Agric Chem*, 43, **1995**, 2719.
- 7 Gangjee A & Adaer G, *J Med Chem*, 42, **1999**, 2447.
- 8 Ahluwalia V K & Gupta C, *Heterocycles*, 32(5), **1991**, 907.
- 9 Trautman H D & Longe L M, *J Am Chem Soc*, 70, **1948**, 3436.
- 10 Surray A R, *J Am Chem Soc*, 71, **1949**, 3354.
- 11 French G, *Chem Abstr*, 65, **1966**, 4439.
- 12 Doran W J & Sholen H A, *J Org Chem*, 3, **1938**, 193.
- 13 Sayed Bayoumy B, *Acta Pol Pharma (Poland)*, 13, **1991**, 48.
- 14 Srivastav S K & Srivastav S D, *Indian J Chem*, 39B, **2000**, 104.
- 15 Oza H, Joshi D & Parekh H, *Indian J Chem*, 37B, **1998**, 822.
- 16 Shah B R, Desai N C & Trivedi P B, *Indian J Heterocycl Chem*, 2(4), **1993**, 249.
- 17 Riaz F A & Furh H K, *J Med Chem*, 18(6), **1975**, 625.
- 18 Trivedi P B, Undavia N K & Desai N C, *Indian J Chem*, 32B, **1993**, 760.
- 19 Sharma S D & Khurana J P S, *Indian J Chem*, 28B, **1989**, 97.
- 20 Srivastav V K & Shanker K, *Indian J Chem*, 26B, **1987**, 652.
- 21 Shrenik K & Shah B, *Eur Pat Appl EP*, 360 199, **1986**; *Chem Abstr*, 110, **1989**, 173073u.
- 22 Mahmoud M R & Radwan A M, *Indian J Chem*, 35B, **1996**, 915.
- 23 Ram S & Townsend L B, *J Med Chem*, 35(3), **1992**, 539.
- 24 Mallakpour S & Taghizadeh H A, *Molecules*, 8, **2003**, 359.
- 25 Dimmock J R & Stable J P, *Eur J Med Chem*, 35, **2000**, 241.
- 26 Mystafa A & Shobby M E E, *J Org Chem*, 23, **1958**, 1992.
- 27 Sharma S D & Bose A K, *Indian J Chem*, 33B, **1994**, 624.
- 28 Barry A L, *The antimicrobial susceptibility test, principle and practices*, edited by Illus Lea & Febiger 180, *Biol Abstr*, 64, **1977**, 25183.